skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Janson, Lucas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 15, 2025
  2. Abstract Conjoint analysis is a popular experimental design used to measure multidimensional preferences. Many researchers focus on estimating the average marginal effects of each factor while averaging over the other factors. Although this allows for straightforward design-based estimation, the results critically depend on the ways in which factors interact with one another. An alternative model-based approach can compute various quantities of interest, but requires correct model specifications, a challenging task for conjoint analysis with many factors. We propose a new hypothesis testing approach based on the conditional randomization test (CRT) to answer the most fundamental question of conjoint analysis: Does a factor of interest matterin any waygiven the other factors? Although it only provides a formal test of these binary questions, the CRT is solely based on the randomization of factors, and hence requires no modeling assumption. This means that the CRT can provide a powerful and assumption-free statistical test by enabling the use of any test statistic, including those based on complex machine learning algorithms. We also show how to test commonly used regularity assumptions. Finally, we apply the proposed methodology to conjoint analysis of immigration preferences. An open-source software package is available for implementing the proposed methodology. The proposed methodology is implemented via an open-source software R packageCRTConjoint, available through the Comprehensive R Archive Networkhttps://cran.r-project.org/web/packages/CRTConjoint/index.html. 
    more » « less
  3. A long-standing question in robot hand design is how accurate tactile sensing must be. This paper uses simulated tactile signals and the reinforcement learning (RL) framework to study the sensing needs in grasping systems. Our first experiment investigates the need for rich tactile sensing in the rewards of RL-based grasp refinement algorithms for multi-fingered robotic hands. We systematically integrate different levels of tactile data into the rewards using analytic grasp stability metrics. We find that combining information on contact positions, normals, and forces in the reward yields the highest average success rates of 95.4% for cuboids, 93.1% for cylinders, and 62.3% for spheres across wrist position errors between 0 and 7 centimeters and rotational errors between 0 and 14 degrees. This contact-based reward outperforms a non-tactile binary-reward baseline by 42.9%. Our follow-up experiment shows that when training with tactile-enabled rewards, the use of tactile information in the control policy’s state vector is drastically reducible at only a slight performance decrease of at most 6.6% for no tactile sensing in the state. Since policies do not require access to the reward signal at test time, our work implies that models trained on tactile-enabled hands are deployable to robotic hands with a smaller sensor suite, potentially reducing cost dramatically. 
    more » « less
  4. null (Ed.)